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Central Limit Theorems in the Area of Large
Deviations for Some Dependent Random Variables

by
Narasinga Rao Chaganty and J. Sethuraman

Abstract

A triangular array of dependent random variables (X{“). cesy x,(“‘) )
vhose joint distribution is given by dQ (x) = z;‘exp[-un(gg]w(xj).
where x = (xl, rees xn) € m". z, is the normalizing constant and
P is a probability measure on IR has been used to describe the distri-
bution of magnetic spins in a body. Let Sn = xi“h ces * x,(‘n)be the
tctal magnetism present in the body. For certain forms of the func-
tion H, Ellis and Newman (Z. Wahrscheinlichkeistheorie und Verw,
Gebiete 44 (1978) 117-139) and Jong-Woo Jeon and SetXuraman (IMS Bulle-
tin (1978) Abstract #165-116) showed that under sppropriate conditions
on P, there exists an integer r 2 1 such that Sn/nl"“ converges
in distribution to a random variable which is Gaussian for r = 1 and
non-Gaussian for r 2 2. In this paper utilizing the large deviastion
local limit theorems for arbitrary sequences of random varisbles of
Chaganty and Sethuraman (Dept. of Stat., FSU, Tech. Report M630) we

obtain similar central limit theorems for a wider class of functions
Accession For

H_, thus generalizing the results of the previous authors.
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1. Introduction
_—-=> In this paper we obtain central limit theorems for some depen-
& dent random variables which are used to describe the distribution
of magnetic spins present in a ferromagnet crystal. A ferromagnet

crystal consists of a large number of sites. At site i there is

some amount of magnetic spin present, will be denoted by

x{“). i=1, ,..,n, where n is a posm The magnetic

spin present at any site interacts with the magnetic spins at its

neighboring sites and hence gives rise to some dependency among 'ﬁ{»t “T;IM e e
the xf')'s. In the Ising model, the joint distribution, at a fixed ‘?hM —
temperature T > 0, of the spin random variables (xl("). ceey Xifn)) /\

_: . is given by
. H(x)] n
dQn(-x) = znlexp [. -l,r—] jl.l1 dP(xj) (1.1)

where x = (X), ..., X ) € R" and P is a probsbility measure on IR
with mean 0 and variance 1. The function H (x) is known as the

Hamiltonian and it represents the emergy of the crystal at the con-
figuration x, z is the normalizing constant which is also known as
the partition function. In many cases explicit evaluation of z,

is very difficult and physicists usually try to evaluate the limiting
free spin per state ¢(T), at the temperature T, as defined below:

¥(T) = -lin ,-l;log . (1.2)
ul~

-
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For some particular types of Hamitonians it was shown by
physicists that there exists a temperature level 'rc such that the
function ¢(T) is infinite or finite according as T <« 'l'c or T » Tc

(see Kac (1968)). 'l'c is the critical temperature at which a phase
transition occurs. As pointed out by Ellis and Newman (1978) the

existence of the critical temperature can be demonstrated in yet

another way. For T > Tc. the model shows that there is a weak depen-
dence among the random variables (Xl(.“), ooy x‘(l")) and a standard
central limit thecorem is valid for S I/lT - However for T = T_, there
exists a § ¢ (1, 2) such that S I “ 2 converges to & non-Gaussian
limit and for T < Tc due to the strong dependence of the x;")'s,

the random variables tend to cluster in several ergodic components.
One can show that the central limit theorem is valid on each of the
components. This is the approach that we take in this paper. In
Section 2, we consider a special case for the Hamiltonian by setting
it to be equal to - 1 b 3 xixj This is known as the Curie-Weiss model.
The asymptotic distributim of § n for this model when P is symmetric
Bernoulli is obtained by Simon and Griffiths (1973). In a two paper
series, Ellis and Newman (1977, 1978) extended Theorem 2.1 of Simon

and Griffiths to the class of probability measures L., defined in

ol
2.2, and subsequently to the class L, defined in 2.4. These exten-
sions are stated in Theorems 2.3 and 2.8. Recently Jong-Woo Jeon

(1979) in his Ph.D. dissertation gave a simpler and statistically i
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motivated proof of Theorem 2.8 snd used the technique to obtain
similar limit theorems for a wider class of Hamiltonians. His
results as well as the results of the previous authors are stated
precisely in Section 2. The goal of this paper is to extend
Theorem 2.11 of Jong-Woo Jeon (1979) further for a larger class
of Hamiltonians. Our main result, Theorem 3.4, is stated in
Section 3. The proof of Theorem 3.4 rests on recent large devia-
tion local limit theorems of Chaganty and Sethuraman (1982). We
also state these results, Theorems 3.1 and 3.2, in Section 3.

We now briefly give our reasons for calling theorems on
the asymptotic distribution of sn under Qn' defined in (1:i1), as
limit theorems in the area of large deviations. A standard tech-
nique in statistics literature is to first obtain the asymptotic
distribution of Sn under P » where

P (x) jn @ (x,) (1.3)

and thenuse contiguity arguments, as in LeCan (1960) to obtain
the asymptotic distribution under Qn This technique breaks down
completely in this case. For the various models considered in
Physics which are described in greater detail in Sections 2 and 3,

dq,,(_) H (_)

converges to « in probability under Pn and thus contiguity arguments

} -
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are not spplicable here. Under P , Sn/v’i has a limiting normal
distribution. Also, under P, ILn(gl is small in the area of
ordinary deviations of S , that is, when S_//h is finite, while
it is large otherwise. Thus from the point of view of Pn’ vwe are
looking for the asymptotic distribution of sn, vhen Pn is modified
by Ln(g), which is substantially different from 1 in the area of
large deviations of sn. This view point helps in a statistically
motivated proof of the asymptotic distribution of Sn under Qn and
describes the background behind the title of this paper. One should
also note that the normalizing factor on Sn in its asymptotic
distribution under Qn is different from the corresponding factor

under Pn.

- .-,.mw--n-:
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2. A Brief Summary of Curie-Weiss Model and Its Extensioms.

In a ferromagnetic system with only isotropic pair inter-
actions and with no external magnetic field, the form of the
1
Hamiltonian, “n’ may be taken as Hn(xl, cees "n) = --24:8 aijxixj'
vhere aij 2 0. If it is assumed further that ‘ij = 'll for all

i and j, that is to say that each spin interacts equally with

every other spin with strength ;ll-and P is taken to be symmetric
Bernoulli, i.e., P(-1) = P(1) = 7, one obtains the Curie-Weiss

E' model. Replacing P by Pp(x) = P(x/T), we get
aQ (x) = z;l exp[s:/Zn] IdP(x,), where s = X, + ... ¢+ X, (2.1)

This model has the advantage, that the limiting free spin

per site can be solved exactly. The existence of the critical tem-

' ‘ perature and phase transition for this model was demonstrated by

i o ol Ll

Kac(1968) and the asymptotic distribution for the total magnetism,

Ll

Sn, for this model was obtained by Simon and Griffiths (1973) which
is contained in Theorem 2.1.

Theorem 2.1, (Simon and Griffiths). Let X, J =1, ..., n, be

a triangular array of random variables whose joint distribution is
given by (2.1) and P be symmetric Bernoulli. Then sn/n3/ 4 converges

in distribution to a random variable whose density function is pro-

portional to exp(-y4/12).

e S R Ma s &
e dy b et e L

Ty

Theorem 2.1 was extended to the class of probability measures

w

Lo, which is defined below, by E1llis and Newman (1977).
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Definition 2.2. Let l.o be the class of symmetric probability mea-

sures P on IR such that

/ exp(x>/2)dP(x) < = (2.2)

and

2
o(t) = Jot*dP(x) < e* /2 for t = 0. 2.3)

Let y(t) = logé(t) be the cumulant generating function of P.
Since P is symmetric, the Taylor series expansion of ¢(t) about the
origin consists of even powers of t,

T 2s
W) = J e tT/(29)1, (2.4)
s=]
where Cog is the 2sth cusulant of P and the series converges in
a neighborhood of the origin. Let the index r be defined as

1 if °2 =1
r= (2.5)

lmin{s >1: c,q =0} if €, = 1.
It is easily verified that the symmetric Bernoulli belongs to
the class Lo with the corresponding value of r equal to 2. Thus
the following theorem due to El1is and Newman (1977) extends Theorem

2.1 to a larger class of probability measures. Let Yr‘ r 21, be
a sequence of random variasbles with density function pr(y) » where




e g -

TR W R PY U T

oy .

‘r oxp[-c.“ yzr/(Zr)I) ifra22 2.6
PO = -6
N(O, (1 - cz)lcz) ifr=1,

and ¢!r is the normalizing constant.

Theorem 2.3. (Ellis and Newman). Let P ¢ Lo and the index r be de-
fined by (2.5). Let xg"). j=1, ..., n, be a triangular array of
random varisbles with joint distribution given by (2.1). Then

n d

;13“—:* - )'r . 2.7)
Ellis and Newman (1978) further extended Theorem 2.3 to a bigger

class of probability measures L than l.o by removing the assumption

of symmetyry and Condition (2.3). The class L is defined below.

Definition 2.4. Let L be the class of probability measures P on IR

such that
fexp(x2/2)aP () < o. (2.8)

Fix P ¢ L. Let ¢9(t) be the c.g.f. of P and set the function
G(t) = t2/2 - y(t), for t € R.
Definition 2.5. A real number m is said to be a global minimm for

G if G(t) 2 G(m) for all t.
Definition 2.6. A global minimum m for G is said to be of type r

if

G(tem) - G(m) = c, t77/(20)1 + o(t|?) as ¢ + 0,
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where €or * G(Zr) (m) is strictly positive.

Definition 2.7. A probability measure P is said to be pure if G has

a unique global minimum,
With these definitions we are now in a position to state further
generalization of Theorem 2.3 also due to Ellis and Newman (1978).

Theorem 2.8, (Ellis and Newman). Let P ¢ L be pure and m be the

(n)
i

gular array of random variables with joint distribution given by (2.1).

unique global minimum of type r. Let X./, j=1, ..., n, be a trian-

« x(M (n)
l.etsn )(1 o...oxn . Then

(2.10)

where Yr is defined by (2.6).

An alternate proof of the above theorem was given by Jong-Woo
<ceon (1979). Using the technique of this new proof he was able to
obtain similar limit theorems for a wider class of Hamiltonians. We
present his results after making a few observations. Note that the
moment generating function m(t) of the standard normal is given by

2
m(t) = et /2. Then we can write (2.1) as

dQn(_J_t_) = z;'l[m(sn/n)]n ndP(xj). where Sp =Xt *t R (2.11)

One might ask the question whether it is possible to obtain limit
theorems of the type (2.10) when m is replaced by the moment generating
function b of a random varisble U, not necessarily standard normal.
This is precisely the question that was raised snd answered in the

affirmative by Jong-Woo Jeon (1979).
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Fix a random variable U with E(U) = 0 and whose m.g.f, %
is finite in a neighborhood of the origin. Assume that the density
function of U is bounded. Let yu(s) = sgp[st - log ou(t]] be

the large deviation rate of U. For a probability measure P, let
Gu(s) = yu(s) - $(s), where Y(s) = log ]esde(x). (2.12)

Definition 2.9. Let Lu be the class of probability measures P such

that
feful®)ds< « (2.13)
and
Jo,(s) dP(s) < =, (2.:9)
Definition 2.10. A global minimum m for Gu is said to be of Type
r if
G (s > -G (m) =c, s5/(2r)1 + 2%y as |s| » 0
u - u C2r r) o(|s| ), Is|] + 0, (2.15)

where Cor © G&zr)(m) > 0.
The following Theorem 2,11 generalizes Theorem 2.8 to a larger

class of Hamiltonians.

Theorem 2.11. (Jong-Woo Jeon). Let P ¢ L and x§“). §=1, ..., n,

be a triangular array of random variables with joint distribution

given by

Q) = 3! ¢(s /m) MaP(xy), (2.16)
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where x = (xl. ceay xn), L TR N and z, is the normalizing
constant. Assume that Gu has the unique global minimum of type ¢

at the origin. Then

- 4, Y, (2.17)

where Yr is defined by (2.6).

3. Further Extensions of the Curie-Weiss Model.

In this section we propose to extend further Theorem 2.11 by
enlarging the class of Hamiltonians as well as the class of probability
measures Lu. The large deviation local limit theorems for arbitrary
sequence Tn' n 2 1, of random variables of Chaganty and Sethuraman
(1982) are the key tools which make this extension of Theorem 2.11
possible. The Hamiltonian,Hn, in our generalized model (3.7) is
taken to be the cumulant generating function of these random variables
Tn. We state the main Theorem 3.4 after presenting the large devia-
tion local limit theorems 3.1 and 3.2.

Let {15. n 2 1} be a sequence of non-lattice random variables
with c.f. On(z) vhich is analytic and non-vanishing for z in
s {2: lReal(z)] < a} with a > 0. Let I = (-a,a) and I1 8(-81, al),

where 0 < a1 < a. Let

V() = 2log ¢ (z) forze £ and (3.1)

Y (W) = ::;I:[su -y, (W], (3.2)
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Assume that E(Tn)/n = m and Var('l‘n)/n = oz, v 21. Let
fmn} be a sequence of real numbers converging to m as n + « such
that ncl% - ml >)1, for0<6§<1. Let Gn,t(t) = wn("r)ﬁt mn-wn(ﬂit),
for T € 11. The following theorem, which provides an asymptotic ex-
pansion for the density function k, of 'rn/n in terms of the large
deviation rate Yn' is due to Chaganty and Sethuraman (1982).
Theorem 3.1. Assume the following conditions for Ty:
(A). There exists 8 > 0 such that hv,,(z)l <Bvzef wmz21,

(B). There exists a > 0 and T, I, such that w"l(rn) am and

1 n

v, (t)2e, vrel,vnzl
(C). There exists n > 0 such that for any 0 < § < n,

inf Real(G
|t|26 n

where Gn(t) a Gn,t (t).

(t)) = min[Real(G (5)), Real(G (-6))], vn 2 1,

(D). There exists p, £ > 0 such that

[lofe + 1019, @ = 0Py v

s a -ny, (m.)
k (m) E_;“-a—- e "nl"n’ (1 so(|m - m])]. (3.9

We have the following analogous theorem for lattice valued
random variables.
Theorem 3.2. Let 'rn take values in the set {anOkhn: ke0,+1,32, ...).

Let (m = (3¢ k,h.) /n} be a sequence of real numbers, where {k }

is a sequence of integers. Assume that Conditions (A), (B) of Theorem




3.1 hold. Replace Conditions (C), (D) by the following:
(C°). There exists n > 0 such that for any 0 < § < n,

inf Real(Gn(t)) = min[Real(Gn(G)), Real(Gn(-s))], sn2l.
Gs|t|$1r/|hn|

-

(D). There exists p, £ > 0 such that

w/hn P
II%(T v it)/e ()| = 0(") vrel.
-n,hn
Then
Pe(— =m) = e [1+0(m -np]. (3.9
] ™ ™ /e n

We now proceed with some notation needed to state the main
Theorem 3.4 of this section. Fix a sequence of random varisbles Tn,
n 2 1, satisfying the conditions of Theorem 3.1. Let Yy Y, be as
defined in (3.1) and (3.2). For a probability measure P on IR, let
h(u) be the c.g.f. of P and Gn(u) a Yn(u) - h(u). The function Gn
plays the same role as the function G of Section 2.

Definition 3.3. Let I.t be the class of all probability measures

P on R such that the following two conditions hold:
! e"n(u) dP(u) <» vn21 and (3.5)
therc exists p, & > 0 such that

[ e *nMygy o 0@P). (3.6)
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Let Y. , r 2 1 be @ sequence of random varisbles with p.d.f.
given by dr exp[-cz,yzr/ " (m))zr(Zr)I] ifr>2and -
N(O, h" (m) (h" (m) + °2)/°2) if r = 1, where Sor is a constant and
dr is the normalizing factor. The following theorem is the main re-
sult of this section.
Theorem 3.4. Llet P ¢ Lt‘ Let xJ@"). j=1, ..., n, be a triangular
array of random variables with joint distribution given by

dQ, (x) = z 0 (s,/n) jn dP(xj) (3.7

Assume that G “'s have a unique global minimum of type r at the

point n, and G'(‘Zr) (mn) * Cyp @3S N+, Then

S -nr

Lt 4, Y. (3.8)

Remark 3.5. The distribution function Q (x) is well defined because

n® [ 8 (s /m)ndP(x ;)

ml‘l

. [ e™a(sn/n) ndP(x,)

mtl

s J ez"n(xi) ndP(xj) [since ¥ is convex)
m“

n
['{ e"n(")dp(x)] <= [by (3.5)].
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The proof of the sbove theorem is postponed until the end
of Lemma 3.10. Let

807) = expl-y*c, J20)1] (5.9)

and

-lgx,

8,) = /T k (a on” Ty R e Ty)eC (m)] (3.10)

where kn is the p.d.f. of ‘l‘n/n. n21. We will need the following
lemmas in the proof of Theorem 3.4. Lemma 3.6 shows that gn(y)
converges to g(y) as n + » for each y. Lenmas 3.7, 3.8, 3.9 and
3.10 show that

[, *[8t) asn~e.

Lemma 3.6. Let G(2r)(- )=c¢ 1f G has a wnique global mini-

2r,n’
oun of type r at thepomtm andczhn Cor as n + =« then
g,(y) +8(y), asn + = (3.11)

Proof. Fixy ¢R. By Theorem 3.1 we have as n + =,
8,(v) = o/Z/m K, (n 0 Ty)e nh(aen” Ty)eC, (m)]
" (™ G nm""\‘m-“’ ) uoo(ln,.m""r-lll
u o-BIC, (m en” *y)- -G (» n[hotln,,'n v-al)]

2
e lfrczr'u/(zt') 1e0(y**/n)] [140( |-non° y-a})].

e ——— e et




LN

-
g %

The lemma is now immediate taking limits asn +». ||

The following Lemma 3.7 is crucial to the proof of the Lemma
3.8.

Lemma 3.7, Let 0 < & < )sr. Suppose that G,'s have unique global
minimum of type r at the point m. then there exists N such that

2r

y
n[G, (a en" )G (n )] 2 2(2r§7 vnzN, (3.12)

uniforaly for |y] < nf.

Proof, let 0 < ¢ « °2r/2‘ Since €2y n CORVErges to Car we can
»

find Nl such that °2r.n > cztlz +egV¥na Nl’ Also since

2r
u
Gy (m +u)-G (m ) = _(_:21_’{1_13_ * o(lulzr) asu+0

uniformly in n, we can find n > 0 such that for |u| < n we have

2r
u e 2r
- 2%,Nn u'e

ol ST o

Fix N2 such that n-ths <cn¥V pn2 Nz. Then N = max(Nl. llz) does

the job because for n = N and |y| < n® we have Iyz’/nl < n. There-

fore

2r

[, 2r
n[cn(%on""y)-cn(-n)] -[y—fz—%gﬁ +n oL-IZL—H
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vV n 2N umiformly for |y| < n‘. This completes the proof of the
lemma. ||

Lemma 3.8. Let 0 < & < Jgr, Let g and 8, be as defined by (3.9)
and (3.10). Suppose that Gn has a unique global minimum of type

r at the point » then

] 8,0 +[20dyasa+e. (3.13)
|yl

Proof. For |y| < ns, note that n""y converges to zero uniformly

in y. Therefore from Theorem 3.1 we get as n + «

X (o %y) « ATE o le My (B P ) (140([mon Fy-m])].  (3.14)
Thus

[ g, 0dy = o/Zxn / e“[h('n’“-kr”’cn(nn)]kn(mnon"‘ry)dycs‘15)

lylsn® ly)sn®

- g R -
= [ . e n[Gn(llnm Y) Gn(%)lll‘oq‘n‘n ’iry_-')]dy
Iylsn

= [ A, N4y,
where

- e LR
An(y) s 1 (l yI < nG)e “[Gn(-nm Y) Gﬂ(.n) ] [1‘°(| .n,n-l;ry_-l ) l
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and I is the indicator function. It follows from Lemms 3.7 that
“n(”' is bounded by an integrable function. We can now conclude
from Lemma 3.6 and Lebesgue dominated convergence theorem that

Doy + [g(y)dy as n + = (.16)

The proof is now complete. ||

The following Lemma 3.9 is needed to prove the next Lemma
3.10.
Lemma 3.9. Let ('rn, n 2 1) be a sequence of random variables

satisfying the conditions of Theorem 3.1. Then

P+l

enYn(mn’Y)kn(mnoy) s0(n ") Vy,asnoe e (3.17)

Proof. Let y ¢ Rand ty be such that

Y, (@,0Y) = (ﬂn’Y)‘ty - "n(‘y)'

A simple application of the inversion formula applied to kn. yields

n®a*x (n oy) '|E": [ enl,(r rit)y ()-den(men],,

.n(t +it) { 1/n

n T pel
sf;l' "G, dt = o(n ). ||

Lexma 3.10. Let 0 < § < ¥r. Suppose that Gn has a unique global
minimum at the point n and let &, be ss defined by (3.10) then

| 80dyr+0 ssnea.
lyl>n®
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Proof. By (3.10) we have

I g, Ny
ly|>a®

-ir
nfh(m en “y)+G (m )]
sofifs [ e ° BTk (men Fy)ey

§
lyl>n

-n[G_(m_+n""Fy)-G_(m )]+ny,_(n_en"Fy)
so¥Zt/m [ e ™7 a1 % ’ kn(mnon"”ry)dy.
lyln® ‘

M

Substituting y' = n" %y, we get

l / an(y)dvl
ly|>n®
1
-%(1- -n[G -G
< oficn 5(1-2 | le n| L (0,+Y) n(mn)]'Ienvn(mnoy)kn(.n,y) |dy
ly|an®"
1
Palg(1e= ~(n-2)[G (m +y)-G (m )] -2[G (m +y)-G )
SO(n;! T)) nax e nn nn]e"[n-n n('n]
lylan®-'®

The last inequality follows from Lemms 3.9. Thus we get from

Condition (3.6)

-(n-2) [G_(m _+y)-G (m )]
| ] ot e RS
lyl>n fylzn“"
-(n-4
= o(nY)e )L“. where q = zm‘u.%)
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and

Lys  mn (G (a,)-G,00)]
lylan

= min{[G, (n*"Fen )-G_(m)), (6, (-n*"Fom)-G ()]}

o S22, n2¥(6-%r)

€5) * o,

since = is the unique global minimum of Gn and ¢ 0. Hence

2r,n >
C
| 1 0w« ocnq)e'(""’[(zi)'? "2'“""’*0("2’“"")’]
8

lyl>n

which goes to 0 since 0 < § < Jr and the proof is complete. ||
Going back to the proof of Theorem 3.4 we first express Qn
defined in (3.7) as follows: '

-1
4, (X = 2 "¢, (s, /n)NdP(x,)
- ys
=z [ e Mk 0)eymeP(xy)
(m_sm y)s
=1 ~ir n -&T
= e M (2 n " Fy) dyndP (x,)

2 x (mnm-"ry) -h(nnmd"‘ry)

s 21" b
zn [ jfle dl’(xj)
-kt
nh(m en “y) -
xe B k (m o y)dy

n
o | 18 5000, (3.19)




where
~lgT, -kr,
x;(m.+n “y)-h(m +n “y)
$ Ao n
dMn,y(xj) = e dP(xj) (3.20)
and
-l
-1 -y BR(m +n *y) -
fn(y) = znln ”’e n kn(mnm "'y). (3.21)

Since fdQn(_x) = 1 and [mn.y(xj) = 1 for each y and j we have
[fn(y)dy = 1. Thus we can introduce random variables Vu with p.d.f.
fn and the representation (3.19) of dQn(y shows that xgn)_
j=1, ..., n, are i.i.d. dMn y(x) given Vn = y. We now proceed and

]
obtain the limiting distribution of (sn-nrn)/nl-l“mder dMn y(x).

Consider,

e[(S,_-nt ) /)

log EMn’ye
. ,,:- n:__f.'.;; +h [;TEF o0y . mn] - h(n"“'yomnil
- nl- ;::{‘5'_ * b0 Fyem) T ;nlz‘:ﬁ h"(n”"mn)oo(n")]
. n:- :-.:—js"; _o_h_;g,'g;. . ,:".'..-(;:!23. ;;—37? h"(mn)m(n'l)]

2
h'"(m )t
-[hu(-n)ty * -z—nci:;%r— 00(1)] »
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since G"‘(mn) = 0 and therefore yl"(ln) = h'(nn) =T Thus

S -nt
tl:“_-r-rs—_'-‘zl h"(m) ty ifr>1 (3.22)
n )
log E e +
M!"y h" m tz
h"(m)ty + —(é_)—- ifrs=1]
This shows that the limiting distridbution of (Sn-nr n)/nl"u given

Vn = y is degenerate at h"(m)y if r > 1 and N(h"(m)y, h"(m)) if

r=1.
Next we note that

1 <tgr Ty Fy)

£ (y) = z'n e K (m *n

%)

B, ")
Je ey

where gn(y) is as defined in (3.10). By Lemmas (3.6), (3.8) and
(3.10) it follows that

fn(y) - £f(y) = L0 ne >, (3.23)
[ety)dy

wvhere

2r
y“Te, /(20) 1
gly) = e 2r .

The proof of the theorem is completed applying Theorem 3.12 of
Sethuraman to (3.22) and (3.23). ||
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Remark 3,11, When Tn is the sum of n i.i.d. random variables
distributed as U with m.g.f. ¢, ¢_(s /n) becomes ¢"(s /n) and
the class of probability measures Lt reduces to the class Lu‘
Thus Theorem 3.4 generalizes Theorem 2.11 to a larger class of
Hamiltonians and probability measures.

We now state the theorem of Sethuraman (1961) which was cru-
cially used to obtain the limiting marginal distribution of
(Sn-ntn)/nl'*r in the proof of Theorem 3.4.

Theorem 3.12 (Sethuramsn). Let An be a sequence of probability
measures on V x W, where V and W are topological spaces. Let vy
be the marginal probability measure of An on V and vn(v, *) be

the conditional probability measure on W. Suppose that v con-

verges to a probability measure u for every measurable set in V

and for almost all v with respect to u, vh(v, *) converges weakly
to v(v, *). Then An converges weakly to A, where

A(A % B) = { v(v, B)du(v) (3.24)

for every measurable rectangular set A x B,

= Tpr
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